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Hypoxia	
Oxygen	dissolves	in	water.		Satura;on	or	equilibrium	state	

depends	on	T	and	S	and	P		
…	in	equilibrium	with		
	 	 	 	atmosphere	

	
	[O2]	~	250	mmol/m3	or	8	mg/L		
	 	 	 	(at	~	15oC	or	59oF)	
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Oxygen	dissolves	in	water.		Satura;on	or	equilibrium	state	

depends	on	T	and	S	and	P		
…	in	equilibrium	with		
	 	 	 	atmosphere	

	
	[O2]	~	250	mmol/m3	or	8	mg/L		
	 	 	 	(at	~	15oC	or	59oF)	

	
Oxygen	levels	can	be	above		

or	below	equilibrium	
…	primarily	due	to	produc;on		
	 	 	and	remineraliza;on	
	 	 	 	(photosynthesis	&	respiraIon)	

	
Hypoxia	typically	defined	as	[O2]	<	2	mg/L	
		



Hypoxia	occurs	naturally	where	oxygen	is	taken	up	faster	than	it		
can	be	replenished	by	photosynthesis	or	flux	from	atmosphere.	

	
	
	
	
	
	
	
	
	

		
		 	 	 	 	 	Oxygen	Minimum	Zone	

		

Hypoxia	
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form at bathyal depths (100-1000 m) in regions of upwelling 
(nutrients), old water, absence of ventilation 
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De-oxygena;on	
Concern	is	for	“deoxygena;on”	–	a	trend	towards	lower	oxygen	

	 	 	 	 	 	 	 	 	 	(and	associated	ecological	impacts)	
	
Well	recognized	in	context	of	local	eutrophica;on		
	
	
	
	
	
	
	
	
	

		Chesapeake	Bay 	 	 	 	 	 	Mississippi	River	Plume	



De-oxygena;on	
Concern	is	for	“deoxygena;on”	–	a	trend	towards	lower	oxygen	

	 	 	 	 	 	 	 	 	 	(and	associated	ecological	impacts)	
	

New	concern	with	global-scale	deoxygena;on	…	
Ø  Expansion/intensifica;on	of	OMZ	

o  Surface	warming	and	lower	oxygen	in	surface	waters	
o  Surface	warming	and	less	ven;la;on	through	mixing	

Ø  Enhanced	upwelling	–	changes	in	wind	
Ø  Upwelling	source	waters		

o  Local	enrichment	(respira;on)		
o  Changes	in	deep	circula;on	

Ø  Oxygen	uptake	over	shelf	–	sediment/circula;on	
Ø  Local	eutrophica;on	
Ø  Local	stra;fica;on	(runoff)	
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Concern	is	for	“deoxygena;on”	–	a	trend	towards	lower	oxygen	

	 	 	 	 	 	 	 	 	 	(and	associated	ecological	impacts)	
	

New	concern	with	global-scale	deoxygena;on	…	
	

		 	Oxygen	decline	in	NE	Pacific	over	last	50	years.	

Oxygen has declined in the NE Pacific Ocean over the past 50 y 

Station P - Whitney et al. 2007 

26.9 isopycnal 

Oxygen loss of 0.67µM/y 
                 1956-2004 

British Columbia     Oregon 

50 m 

Bograd et al.  2015  

1978-2010 

1960-2010 1984-2012 
Stn. 93.110  26.5 isopycnal 

Crawford and Pena 2013 Pierce et al. 2012 

So. Cal. Bight 



De-oxygena;on	
Concern	is	for	“deoxygena;on”	–	a	trend	towards	lower	oxygen	

	 	 	 	 	 	 	 	 	 	(and	associated	ecological	impacts)	
	

New	concern	with	global-scale	deoxygena;on	…	
	

		 	DVM	depth	set	by	oxygen	…	habitat	compression	
Diurnal Vertical Migration (DVM) depth set by oxygenation 

Shoaling depths predicted due to metabolic constraints 

Bianchi et al. 2013 

seawater oxygen concentration is the best single 
predictor of migration depth at the global scale 



Low	oxygen	observed	over	OR	and	WA	shelf	(mortality	events)		
–	upwelling	plus	oxygen	demand	of	sediment	and	water	column	
respira;on	…	the	longer	water	retained,	the	worse	it	gets.	

	
	
2005	ECOHAB-PNW	observa;ons	(units	mL/L	and	bold	line	at	1.4	mL/L)	…	Siedlecki	et	al	(2015)	

		 		

(VICC) dominate the British Columbia coast, allowing the shelf to remain oxygenated [Bianucci et al., 2011].
The buoyancy-driven VICC is associated with downwelling isopycnals at the coast, which opposes wind-
driven upwelling [Hickey et al., 1984]. This issue will be discussed further in section 4.1.

The shelf region offshore of Grays Harbor from north of the Columbia River mouth to south of Quinault can-
yon (!46"N–47"N) is the broadest section of shallow (<60 m) shelf off Washington and Oregon. Heceta
Bank is the broadest shelf off Oregon (width !40 km), similar in width to the widest regions of the Washing-
ton shelf (width !50 km), but much deeper than the Washington shelf (117 m versus 75 m, on average).
The relative importance of shelf width and depth to the oxygen demand will be discussed in section 4.1.

3.4. Modeled Spatial Patterns of Respiration in the Northern California Current
The regions that repeatedly experience the lowest oxygen concentrations on average in the modeled years cor-
respond to regions of enhanced respiration, either in the water column or in the sediments (sediment oxygen
demand) (Figure 10). While observations of respiration in the water column are rare, the range of respiration
from the model (0.25–0.75 mmol O2 m23 d21, 0.006–0.017 mL L21 d21) overlaps with the observed range dis-
cussed in Adams et al. [2013] (0.014–0.045 mL L21 d21) based on observations from the Oregon shelf at 70 m
during the upwelling season. In Figure 10, respiration was integrated over 200 m of the water column and aver-
aged over the upwelling season (May–September) for each year. The Juan de Fuca Eddy region, the central
Washington coast, and Heceta Bank are regional hot spots in the maps of total integrated respiration.

The Washington shelf experiences more sediment oxygen demand (Figure 10, second column) than the
Oregon shelf. This spatial pattern is consistent with observations from two locations. Hartnett and Devol
[2003] report sediment oxygen demand of 20 mmol O2 m22 d21 on the Washington shelf at 80 m depth. On
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Figure 8. Cross sections of oxygen in the water column from (top) the model and (bottom) the observations for the same time periods in 2005. Observations made as part of the
ECOHAB-PNW program and described by Connolly et al. [2010] along the vertical gray lines. Observations adapted from Connolly et al. [2010]. Units are mL/L and hypoxia (<1.4 mL/L) is
outlined by the black contours.
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(VICC) dominate the British Columbia coast, allowing the shelf to remain oxygenated [Bianucci et al., 2011].
The buoyancy-driven VICC is associated with downwelling isopycnals at the coast, which opposes wind-
driven upwelling [Hickey et al., 1984]. This issue will be discussed further in section 4.1.

The shelf region offshore of Grays Harbor from north of the Columbia River mouth to south of Quinault can-
yon (!46"N–47"N) is the broadest section of shallow (<60 m) shelf off Washington and Oregon. Heceta
Bank is the broadest shelf off Oregon (width !40 km), similar in width to the widest regions of the Washing-
ton shelf (width !50 km), but much deeper than the Washington shelf (117 m versus 75 m, on average).
The relative importance of shelf width and depth to the oxygen demand will be discussed in section 4.1.

3.4. Modeled Spatial Patterns of Respiration in the Northern California Current
The regions that repeatedly experience the lowest oxygen concentrations on average in the modeled years cor-
respond to regions of enhanced respiration, either in the water column or in the sediments (sediment oxygen
demand) (Figure 10). While observations of respiration in the water column are rare, the range of respiration
from the model (0.25–0.75 mmol O2 m23 d21, 0.006–0.017 mL L21 d21) overlaps with the observed range dis-
cussed in Adams et al. [2013] (0.014–0.045 mL L21 d21) based on observations from the Oregon shelf at 70 m
during the upwelling season. In Figure 10, respiration was integrated over 200 m of the water column and aver-
aged over the upwelling season (May–September) for each year. The Juan de Fuca Eddy region, the central
Washington coast, and Heceta Bank are regional hot spots in the maps of total integrated respiration.

The Washington shelf experiences more sediment oxygen demand (Figure 10, second column) than the
Oregon shelf. This spatial pattern is consistent with observations from two locations. Hartnett and Devol
[2003] report sediment oxygen demand of 20 mmol O2 m22 d21 on the Washington shelf at 80 m depth. On
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Monitoring	GFNMS	and	CBNMS	

ACCESS	profile	data	from	2010	
	
BML	surface	oxygen	from	2010	

	&	sub-surface	oxygen	from	2013	
	
Tomales	Bay	oxygen	from	2014	
	
Cordell	Bank	oxygen	from	2014	
	
Gulf	of	Farallones	in	2015	
	
	
	



Monitoring	GFNMS	and	CBNMS	
ACCESS	profile	oxygen	data	
2010-2014	
Line	2	(CB)	
Line	6	(GF)	
	
	
Also	profile	
data	at		
Bodega	Head	
and	in		
Tomales	Bay	
shows	
low	DO.	
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Monitoring	GFNMS	and	CBNMS	
ACCESS	profile	oxygen	data	
2010-2014	
Line	2	(CB)	
Line	6	(GF)	
	



Monitoring	GFNMS	and	CBNMS	
CBNMS	mooring	data	–	shallower	mooring	CB1	(2014-2016)	
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Monitoring	GFNMS	and	CBNMS	
CBNMS	mooring	data	–	deeper	mooring	CB2	(2014-2016)	



Monitoring	GFNMS	and	CBNMS	
CBNMS	mooring	data	–	comparing	sites	in	2014		
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Monitoring	GFNMS	and	CBNMS	
CBNMS	mooring	data	compared	with	BML	data	for	2014	
	



Monitoring	GFNMS	and	CBNMS	
CBNMS	mooring	data	compared	with	BML	data	for	2015	
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Monitoring	GFNMS	and	CBNMS	
GFNMS	mooring	data	–	site	near	NDBC	46026	in	2015		
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Monitoring	GFNMS	and	CBNMS	
GFNMS	mooring	data	–	site	near	NDBC	46026	in	2015		
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Looking	forward	–		
This	is	just	the	beginning.	
	
Key	ques;ons	…	
•  Has	oxygen	concentra;on	changed	in	the	Sanctuaries?	
•  If	so,	why	has	it	changed?	
•  What	does	this	change	mean	for	the	ecosystem?	
	
Work	going	forward	…	
•  Analysis	of	exis;ng	data	(including	historical	data).	
•  Ongoing	monitoring	in	Sanctuaries.	
•  Poten;al	for	modeling	of	changing	condi;ons.	
•  Linking	to	large-scale	NE	Pacific	fluctua;ons.		

	


